Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
O'Connell, Mary (Ed.)Abstract The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1–307 genes per taxon. We then produced a combined phylogenomic–supermatrix data set (a “gigamatrix”) containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa.more » « less
-
Abstract Natural history collections are repositories of biodiversity specimens that provide critical infrastructure for studies of mammals. Over the past 3 decades, digitization of collections has opened up the temporal and spatial properties of specimens, stimulating new data sharing, use, and training across the biodiversity sciences. These digital records are the cornerstones of an “extended specimen network,” in which the diverse data derived from specimens become digital, linked, and openly accessible for science and policy. However, still missing from most digital occurrences of mammals are their morphological, reproductive, and life-history traits. Unlocking this information will advance mammalogy, establish richer faunal baselines in an era of rapid environmental change, and contextualize other types of specimen-derived information toward new knowledge and discovery. Here, we present the Ranges Digitization Network (Ranges), a community effort to digitize specimen-level traits from all terrestrial mammals of western North America, append them to digital records, publish them openly in community repositories, and make them interoperable with complimentary data streams. Ranges is a consortium of 23 institutions with an initial focus on non-marine mammal species (both native and introduced) occurring in western Canada, the western United States, and Mexico. The project will establish trait data standards and informatics workflows that can be extended to other regions, taxa, and traits. Reconnecting mammalogists, museum professionals, and researchers for a new era of collections digitization will catalyze advances in mammalogy and create a community-curated trait resource for training and engagement with global conservation initiatives.more » « lessFree, publicly-accessible full text available July 26, 2026
-
Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change.more » « less
-
Abstract The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens.more » « less
An official website of the United States government
